
DfynRFQ

Smart Contract Security Assessment

August 1, 2022

Prepared for:

Ramani Ramachandran and Priyeshu Garg

Router Protocol

Prepared by:

Katerina Belotskaia and Vlad Toie

Zellic Inc.

Contents

About Zellic 2

1 Executive Summary 3

2 Introduction 5

2.1 About DfynRFQ . 5

2.2 Methodology . 5

2.3 Scope . 6

2.4 Project Overview . 6

2.5 Project Timeline . 7

3 Detailed Findings 8

3.1 Same token swap is allowed . 8

3.2 DfynRFQ provides a function to renounce ownership 10

3.3 msg.sender.transfer() function usage 11

4 Discussion 12

4.1 Array indexes may be out of bounds . 12

4.2 Gas optimization in reused operation . 12

4.3 Unnecessary safeMath functions call . 13

5 Audit Results 14

5.1 Disclaimers . 14

Zellic 1 Router Protocol

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please email us at
hello@zellic.io or contact us on Telegram at https://t.me/zellic_io.

Zellic 2 Router Protocol

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io
https://t.me/zellic_io

1 Executive Summary

Zellic conducted an audit for Router Protocol from July 18th to July 20th, 2022.

Our general overview of the code is that it was well-organized and structured. The
code coverage is adequate, and tests are included for the majority of the functions;
however, it can be further extended and improved on. The documentation was mini-
mal, and it could be improved. The codewas easy to comprehend, and inmost cases,
intuitive.

We applaud Router Protocol for their attention to detail and diligence in maintaining
high code quality standards in the development of DfynRFQ.

Zellic thoroughly reviewed the DfynRFQ codebase to find protocol-breaking bugs as
defined by the documentation and to find any technical issues outlined in theMethod-
ology section (2.2) of this document.

Specifically, taking into account DfynRFQ’s threatmodel, we focused heavily on issues
that would break core invariants such as the swaps signatures and their verification
as well as how the fees are calculated and distributed. Moreover we thoroughly in-
vestigated the correctness of the swap functionality, such that it serves its intended
purpose.

During our assessment on the scoped DfynRFQ contracts, we discovered 3 findings.
Fortunately, no critical issues were found. Of the 3 findings, 1 was of low severity, and
the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the audit for Router Pro-
tocol’s benefit in the Discussion section (4) at the end of the document.

Zellic 3 Router Protocol

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 0

Medium 0

Low 1

Informational 2

Low

Informational

Zellic 4 Router Protocol

2 Introduction

2.1 About DfynRFQ

DfynRFQ is a multichain AMM DEX that is built to be an interconnected AMM with
nodes spread on different blockchains, and those AMMswill be able to share liquidity
and enable cross-chain swaps. Currently, Dfyn is live on Polygon and Fantom.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security audit-
ing including both automated testing and manual review. These processes can vary
significantly per engagement, but themajority of the time is spent on a thoroughman-
ual review of the entire scope.

Alongside a variety of open-source tools and analyzers used on an as-needed basis,
Zellic focuses primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. We analyze the scoped smart contract code using automated tools to
quickly sieve out and catch these shallow bugs. Depending on the engagement, we
may also employ sophisticated analyzers such as model checkers, theorem provers,
fuzzers, and so forth as necessary. We also perform a cursory review of the code to
familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We manually review the contract logic to ensure that the code implements the ex-
pected functionality as specified in the platform’s design documents. We also thor-
oughly examine the specifications and designs themselves for inconsistencies, flaws,
and vulnerabilities. This involves use cases that open the opportunity for abuse, such
as flawed tokenomics or share pricing, arbitrage opportunities, and so forth.

Complex integration risks. Several high-profile exploits have not been the result of
any bug within the contract itself; rather, they are an unintended consequence of the
contract’s interaction with the broader DeFi ecosystem. We perform a meticulous
review of all of the contract’s possible external interactions and summarize the asso-
ciated risks: for example, flash loan attacks, oracle pricemanipulation, MEV/sandwich
attacks, and so forth.

Codematurity.We review for possible improvements in the codebase in general. We

Zellic 5 Router Protocol

look for violations of industry best practices and guidelines and code quality stan-
dards. We also provide suggestions for possible optimizations, such as gas optimiza-
tion, upgradeability weaknesses, centralization risks, and so forth.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact; we assign it on
a case-by-case basis based on our professional judgment and experience. As one
would expect, both the severity and likelihood of an issue affect its impact; for in-
stance, a highly severe issue’s impact may be attenuated by a very low likelihood. We
assign the following impact ratings (ordered by importance): Critical, High, Medium,
Low, and Informational.

Similarly, Zellic organizes its reports such that the most important findings come first
in the document rather than being ordered on impact alone. Thus, wemay sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on numerous soft factors, such as our clients’ threat
models, their business needs, their project timelines, and so forth. We aim to provide
useful and actionable advice to our partners that consider their long-term goals rather
than simply provide a list of security issues at present.

2.3 Scope

The engagement involved a review of the following targets:

DfynRFQ Contracts

Repository https://github.com/dfyn/dfyn-RFQ/

Versions 0fa84f86fa70046e572570c66c4f1bcb88c9897b

Programs • DfynRFQ

Type Solidity

Platform EVM-compatible

2.4 Project Overview

Zellic was contracted to perform a security assessment with two consultants for a
total of two person-days.

Zellic 6 Router Protocol

https://github.com/dfyn/dfyn-RFQ/

Contact Information

The following project managers were associated with the engagement:

Jasraj Bedi, Co-founder
jazzy@zellic.io

Stephen Tong, Co-founder
stephen@zellic.io

The following consultants were engaged to conduct the assessment:

Katerina Belotskaia, Engineer
kate@zellic.io

Vlad Toie, Engineer
vlad@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

July 18, 2022 Kick-off call

July 18, 2022 Start of primary review period

July 20, 2022 End of primary review period

Zellic 7 Router Protocol

mailto:jazzy@zellic.io
mailto:stephen@zellic.io
mailto:kate@zellic.io
mailto:vlad@zellic.io

3 Detailed Findings

3.1 Same token swap is allowed

• Target: DfynRFQ
• Category: Business Logic
• Likelihood: Medium

• Severity: Low
• Impact: Low

Description

A user might mistakenly perform a same-token swap via the protocol, since there are
no restrictions against that.

Impact

In function _swap() there are no checks whatsoever for whether the tokens[0] and
tokens[1] are identical.

function _swap(
address custodian,
address[] calldata tokens,
uint256[] calldata amounts,
uint64 deadline,
bytes calldata signature

) internal onlyWhitelisted(custodian) returns (bool) {
Swap memory swap = Swap({

user: msg.sender,
custodian: custodian,
token0: tokens[0],
token1: tokens[1],
amount0: amounts[0],
amount1: amounts[1],
deadline: deadline,
nonce: nonces[msg.sender],
chainId: chainId

});

require(block.timestamp < swap.deadline, “Expired Order”);
require(verify(swap, signature), “Invalid Signer”);
require(swap.amount1 > 0 &) swap.amount0 > 0, “amount !) 0”);

Zellic 8 Router Protocol

This can lead to loss of the gas cost used in the transaction, as well as the tokens lost
to protocol fees, all due to an undesireable action performed by the user in the first
place.

Recommendations

We recommend adding an additional check when performing a swap, such that the
tokens on either side of the swap are not the same.

function _swap(
address custodian,
address[] calldata tokens,
uint256[] calldata amounts,
uint64 deadline,
bytes calldata signature

) internal onlyWhitelisted(custodian) returns (bool) {
require(tokens[0] !) tokens[1], “Same token swap is disallowed”);
Swap memory swap = Swap({

user: msg.sender,
custodian: custodian,
token0: tokens[0],
token1: tokens[1],
amount0: amounts[0],
amount1: amounts[1],
deadline: deadline,
nonce: nonces[msg.sender],
chainId: chainId

});

require(block.timestamp < swap.deadline, “Expired Order”);
require(verify(swap, signature), “Invalid Signer”);
require(swap.amount1 > 0 &) swap.amount0 > 0, “amount !) 0”);

Remediation

This issue has been acknowledgedby theRouter teamandmitigated in commit 3be1183.

Zellic 9 Router Protocol

https://github.com/dfyn/dfyn-RFQ/commit/3be118395f415372c77a1f7a34f6174d80dbf1f0

3.2 DfynRFQ provides a function to renounce ownership

• Target: DfynRFQ

• Category: Business Logic
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

The DfynRFQ contract implements Ownable functionality, which provides a method
named renounceOwnership that removes the current owner. This is likely not a de-
sired feature.

Impact

If renounceOwnershipwere called, the contract would be left without an owner.

Recommendations

Override the renounceOwnership function:

function renounceOwnership() public override onlyOwner{
revert(“This feature is not available.”);

}

Remediation

This issue has been mitigated by the Router team in commit 3be1183.

Zellic 10 Router Protocol

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol#L61
https://github.com/dfyn/dfyn-RFQ/commit/3be118395f415372c77a1f7a34f6174d80dbf1f0

3.3 msg.sender.transfer() function usage

• Target: DfynRFQ

• Category: Business Logic
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

The swapTokenToNative calls the transfer function to send requested ether amount to
msg.sender account.

Impact

The transfer function uses a hardcoded amount of GAS and will fail if GAS costs in-
crease in the future.

Recommendations

Consider using msg.sender.call.value(value)(“”) function:

(bool success,) = msg.sender.call.value(amounts[1].sub(feeAmount))(“”);
require(success, “Transfer failed.”);

Remediation

This issue has been mitigated by the Router team in commit 3be1183.

Zellic 11 Router Protocol

https://consensys.github.io/smart-contract-best-practices/development-recommendations/general/external-calls/#dont-use-transfer-or-send
https://github.com/dfyn/dfyn-RFQ/commit/3be118395f415372c77a1f7a34f6174d80dbf1f0

4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

4.1 Array indexes may be out of bounds

In the case of the tokens and amounts array used in the _swap() function, no check on
their length is performed. There are no restrictions in regards to verifying whether
their lengths are equal, as is to be expected.

Due to the nature of how the protocol was built, we recommend checking that their
lengths are equal to one another as well as checking that the length of one of them is
equal to 2.

function _swap(
address custodian,
address[] calldata tokens,
uint256[] calldata amounts,
uint64 deadline,
bytes calldata signature

) internal onlyWhitelisted(custodian) returns (bool) {
require(tokens.length =) amounts.length, “Array size mismatch”);
require(tokens.length =) 2, “Array with inadequate size”);
/) ...))

This issue has been properly resolved in commit 3be1183.

4.2 Gas optimization in reused operation

In swapTokenToNative() the amounts[1].sub(feeAmount) call is used three times, per-
forming unnecessary function calls and subsequent operations. In such cases, we
recommend caching the operation that is to be reused and using the cached value
instead.

/)...))
uint256 amount_after_fee = amounts[1].sub(feeAmount);

Zellic 12 Router Protocol

https://github.com/dfyn/dfyn-RFQ/commit/3be118395f415372c77a1f7a34f6174d80dbf1f0

IERC20(tokens[1]).safeTransferFrom(custodian, address(this),
amount_after_fee);
IWETH(WETH).withdraw(amount_after_fee);
payable(msg.sender).transfer(amount_after_fee);
/)...))

This issue has been addressed in commit 3be1183.

4.3 Unnecessary safeMath functions call

The safeMath library starting from the 0.8.0 version of solidity does not implement
additional checks for mathematical operations.

function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;

}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {

return a - b;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {

return a * b;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {

return a / b;
}

You can avoid importing unnecessary library code as well as unnecessary calls to
these functions to optimize the amount of gas used.

Zellic 13 Router Protocol

https://github.com/dfyn/dfyn-RFQ/commit/3be118395f415372c77a1f7a34f6174d80dbf1f0
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol#L93

5 Audit Results

At the time of our audit, the code was not deployed to mainnet.

During our audit, we discovered four findings. Of these, 1 was of low risk and 2 were
suggestions (Informational). Router Protocol acknowledged all findings and imple-
mented fixes.

5.1 Disclaimers

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic, of course, also cannot make guarantees about any
additional code added to the assessed project after the audit version of our assess-
ment. Furthermore, because a single assessment can never be considered compre-
hensive, we always recommendmultiple independent assessments pairedwith a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code in these recom-
mendations are intended to convey how an issue may be resolved (i.e., the idea), but
they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 14 Router Protocol

	About Zellic
	Executive Summary
	Introduction
	About DfynRFQ
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Same token swap is allowed
	DfynRFQ provides a function to renounce ownership
	msg.sender.transfer() function usage

	Discussion
	Array indexes may be out of bounds
	Gas optimization in reused operation
	Unnecessary safeMath functions call

	Audit Results
	Disclaimers

